

Galvanic isolated 2-wire transmitter 6720

by hand held programmer 6790

General description:

Transmitter 6720 is exceptionally versatile and accepts almost all common sensor inputs. You can configure it by PC. Transmitter front has configuration connector which connects adapter cable POL-RS-232 to serial port of the PC. Menu based configuration program is easy to use. By hand held programmer 6790 you can easily control or configurate the transmitter in field conditions. The 16 bit A/D converter enables high accuracy. Linearity of A/D converter is 0.01 % and conversion accuracy of output signal is 0.03 %, without sensor linearization error. Galvanic isolation is specially important with thermocouples but potential differencies with other measuring circuits can be avoided also by process input signals. Large sensor and other input selection and versatility reduce stocking costs significantly because the 6720 suits for most measuring applications.

Manufacturer:

Nokeval Oy,Yrittäjäkatu 12 FIN-37100 Nokia, FINLAND Tel: +358 (0)3 3424800 Fax: +358 (0)3 3422066

Technical specification:

Thermocouples:

Senso	r Ran	ge	Linea	rity				
E	-100	900°C	< 0.2°C	-50	900°C			
J	-150	900°C	< 0.2°C	-50	900°C			
K	-150	1350°C	< 0.2°C	-40	400°C	(<1°C	> 400 °	C)
L	-100	900°C	< 0.4°C	-50	900°C			
Т	-150	400°C	< 0.2°C	-150	400°C			
N	0?	1300°C	< 0.2°C	0	1300°C			
R	0?	1700°C	< 0.3°C	400	1700°C	(<1°C	< 300 °	°C)
S	0?	1700°C	< 0.3°C	300	1700°C	(<1°C	< 300 °	°C)
C (W5)	02	2200°C	< 0.3°C	400	2200°C	(<0.4°0	C< 400	°C)
D (W3)	02	2200°C	< 0.3°C	500	2200°C	(<1°C	< 500 °	°C)
В	400 1	700°C	< 0.3°C	400	1700°C			
G (W)	1000 2	2200°C	< 0.4°C	1000	1700°C	(<3 °C	>1700	°C)
Range	selecti	on	freely s	electal	ole			

RTD's Pt100:	Pt100 3- or 4-wire connections,
Other RTD's	Pt500, Pt1000, Ni100, Ni1000
Range	-200+700 °C (Pt100, Pt250, Pt500)
	-200+200 °C (Pt1000)
	0+175 °C (Ni100, Ni1000)
Sensor current	0,3 mA
Calibration accuracy:	: 0.05% of span
Linearity	< 0.03 °C (-200700°C)
Sensor error correct	ion freely offset selection

Potentiometer input:

3-wire connection 50-500 Ω range 2-wire connection 2-wire 0-1000 Ω mV inputs: -100...+100 mV Accuracy 0,02% of span Input impedance >1 MΩ Accuracy 0.03% of span Linearity 0,02% of span **Process inputs:** 0..20 mA, 4..20 mA, -20..+20 mA **Display scaling**

Input impedance Accuracy: Linearity:

0..5 V, 0..10 V, -10...+10V On whole display range Current: 5 Ω and voltage: 1 M Ω 0.03% of span 0.01% of span

IR-sensorsExergen 140F-K (60°C) and 440F-K (220°C)Range 140F-K-40..+350°C (linearized range)Range 440F-K-30..+600°C (linearized range)Emissivity correction selectable by PC or hand held programmer

Output: 2-wire	4-20 mA	How to	order:	
Straight and reversed Resolution	4-20 mA / 20-4 mA < 0.03 % of span 24 mA	Туре	6720) - Pt100 - 0/600
Sensor break monitoring	3.5 or 24 mA	Model Sensor inpu		
Configuration:		Range		
Connection	2-pole Nokeval POL-connection (transmitter)	Example:	6720-Pt100-	0/600, sensor: Pt100,
Serial data	RS232, 1200, 9600 bps		range 0600) °C, output 420 mA
Serial protocol General:	Meku 1	Transmitter factory conf	is freely prog igured use a	grammable but if you like it bove mentioned marking
Power supply range	10-32 VDC	procoudioi		
Temperature effects Galvanic isolation Measuring rate AD-converter	<0.005 %/°C 2000 VDC/ 1 min. 4-5 samples/s. 16 bit	Optional: Cable for tra Configuration Hand held p	nsmitter/PC n software rogrammer	POL-RS232 MekuWin 6790
Output DAC	12 bit			
Operating temperature	060 °C			
Ambient storage	-20+70 °C			
Humidity (non -condensing) 095 %RH			
Moight	See table below			
weigni	ouy			

Programming

Transmitter programming is simple by menu based configuration program MekuWin by PC or by hand held programmer 6790, connected to transmitter front plug socket Prog. Transmitter is connected to PC serial port with serial signal cable POL-RS232.

By MekuWin configuration program you can select sensor type and range, input filtering and max. Change rate of output. In addition, you can correct sensor errors by shifting zero level or by changing input range. Program is delivered on one diskette and it is installed by Setup program.

Hardware requirement :

PC at least 486, 16Mb RAM Operating system Windows 3.11, Windows 95/98

Configuration program MekuWIN

MekuWin is configuration program by which you can configure several Nokeval transmitters (Meku-protocol). This program differs from convential programs because it does not include setting commands, which are always loaded from device to be configured. The big advantage of this method is that you do not need to update the program when you later add on new functions or new transmitter models. The same configuration program suits for several transmitters.

🚧 N672	20D Of	fline -	MekuWi	in						
<u>File</u> <u>C</u> o	onnect	<u>I</u> tem	<u>₩</u> indow	<u>H</u> elp						
🚧 N67	720D\(Conf		-	🚧 N6720	D\Conf\Out		x 🗷 Q	uick	-OX
	Con	fig ((input)		Output		1	Comm	<u>S</u> etup	
<u>Sens</u>	<u>or</u>	Tck	(wide	-	Lo	0,		2	<u>C</u> o	nf
Bipol	ar				Hi	1100				_
4-wire	e				Mode	Full	•] 3	<u>M</u> on	itor
Lo		0,			Break	Downso	cale 🔽		Disco	nnect
Hi					Sei				2	
Emis		1,			<u> </u>		_/			
RO							/	- 1		
Unit		*C		•	Selection	on of outr	i Q	uick s	electior	IS:
Filter		0,2			Ocicoti	on or outp	S S	erial p	ort sele	ctions
Slew	limit	0,					C	onfigu	ration w	/indows
Pullu	р						II C	neasure	ement discon	noction
Outp	ut		Out				U	omaci	uiscom	
Seria	I -		Ser							
Code					- Senso	r selectio	ns			
<u>S</u> er	nd+SA\	/E								
	_						_	Help	window	v
De De	vice h	elp - E	Break				×	assis	sts in	
Break: output after sensor break DScale: In fault situation steers outpu					itput to <4	mA (or to	-	selec	tions a	nd
4.00 mA if Mode=Limit)						·		- tell w	hich	
20.00 mA if Mode=Limit)				1(put to > 2	.U ma (or to		settir	ngs can	be	
								made	e and W	ny.
						1	<u>-</u>			

Programming start:

Connect transmitter to PC serial port with adapter cable POL-RS232. Do not forget to supply 24 V to the transmitter.

When you start MekuWin-program for the first time, selection window of communication settings appears automatically. Choose in this window COM port and communication speed (BPS). Use automatic Baud speed selection (Auto).

Set Preamble=0, Address and Slot=0. These functions are not used in 6720 transmitter.

Main window has green quick menu (Quick) with four buttons (if it is not visible, choose it in pull down menu Window/Quick).

The highest button opens common computer settings window mentioned above. Second button (Conf) makes the contact with target device. If communication fails, check computer settings, connection of programming cable and power supply.

Sensor selections:

When connection with transmitter exists, display shows input settings menu. Select sensor type in Sensor. Menu texts may change according to selected sensor type.

After selections, settings are sent to transmitter by Send+Save button.

Input signal setting:

Sensor	sensor type
Bip	Bipolar measurement is possible by unscaled inputs
•	(mV, V and mA). Measuring range covers also
	negative value, f.ex. ±100mA.
4-wire	4-wire measurement is possible by inputs ohm, Pt
	or Ni. You must select 4-wire measurement also
	measuring card (jumper).
Lo	Min. input value (process inputs). By unscaled
	inputs function Lo acts as zero shift and can be
	used to correct sensor error.
Hi	Max. input value (process inputs). By unscaled
	inputs Hi acts as input multiplier by which you can
	scale input value.
Emis, Hi	emission or input coefficient, 1=not in use
R0	0 °C resistance value of RTD (set Pt100=100 ohm)
Unit	Celsius/Fahrenheit selection (to monitor display)
Filter	digital filter, 10.001, 1=not in use
Slew limit	limits the inputs slew rate. Defines how much the
	new measurement result can differ from previous
	one (measuring rate 4 times/second). This function
	can be disabled by setting it on a larger value than
	the measuring range or on the value 0 (default
	value 0).
Pullup	selection of sensor break down (ON/OFF)
Output	opening of output window
Serial	selection of serial signal address (not used for
	6720)
Code	Secret code for setting changes.Secret code
	protects the transmitter against unwanted changes.
	It is 6-digit numeral value. Default value is 000000
	(not in use). If you happen to loose the secret code,
	manufacturer will give you resetin structions for
	new value.

🚧 N6720D \Conf 📃 🔳 🗙				
Config (input)				
Sensor	TcK wide			
Bipolar				
4-wire				
Lo	0,			
Hi				
Emis	1.			
RO				
Unit	•C •			
Filter	0,2			
Slew limit	0,			
Pullup				
Output	Out			
Serial	Ser			
Code				
<u>S</u> end+SAV	Έ.			

Tyypilliset asettelut K-termoelementtille

Selection of output signal range.

Open output window by Out-button

Lo	scaled input value corresponding output 4.00 mA
Hi	scaled input value corresponding output 20.00 mA
Mode	limits output to 4.00/20.00 mA or to 3.5/24.0 mA
	when input exceeds or remains below measuring range
Break	output up or down after sensor break
Send	send settings to transmitter

🕍 N6720D\Conf\Out 🛛 🗖 🗖 🔀					
Output					
Lo	0,				
Hi	1100,				
Mode	Full				
Break	Upscale 🗾				
<u>S</u> end					

Settings:

In configuration menu select input filtering and scaling of output. Settings of input and output have separate windows (Input, Output). In addition, serial signal (Serial) has its own window which is needed only when modem card is installed in transmitter (model 6725).

After sensor selection you may set various correcting coefficients and filters.

When you install settings, notice whether your PC uses comma or period. Erronous decimal point is not accepted.

Thermocouple inputs TcB..TcT

Thermocouple types are marked shortly Tc + sensor, f.ex. TcB=B-type, TcK=K-type etc.. Type K has two ranges. Narrow range TcKn (-80...+450) has better linearization. Broader range TcK covers whole range (-150..+1370 C). If sensor signal is too small or too big, the value can be corrected by Emis-value. F.ex. you want to correct sensor value at its max. reading by +2 %. Set Emis-value 0.98. Default value is 1.

Correction of thermocouple sensor error

Thermocouples are linearized to temperature. Sometimes you need to correct sensor signal. By IRthermopile sensor this need depends on the emissivity of target device.

Emis-coefficient has following effect:

Difference between measured temperature value and cold junction temperature is divided by **Emis**-value and the result is added to coldjunction temperature. Finally **Lo**-value is added. Emis is reverse value of slope and its corner point is cold junction temperature or environment temperature of transmitter.

- Tcj = transmitter environment temperature (abt.)
- Ts = Uncorrected sensor temperature measured by transmitter
- Tn = corrected temperature to display; true temperature
- 6720 calculates Tn = (Ts-Tcj) / (Emis + Tcj + Lo).

The use of slope to correct sensor error (one point correction): Set Emis = 1, Lo = 0.

Heat sensor to calibration temperature. Measure true sensor temperature Tn and temperature Ts measured by 6720. Calculate: Emis = (Ts-Tcj) / (Tn-Tcj)

F.ex. true sensor temperature Tn = 27 °C. Temperature measured by transmitter Ts = 895 °C. Set Correction coefficient Emis = (895-27 °C) / (900-27) = 0.9942. At high temperatures cold junction temperature effect is very small in Emis calculation. You may measure cold junction temperature Tcj easily by connecting jumper to sensor input. 6720 shows its cold junction temperature at terminal block.

Temperature measurement with RTD's

Temperature sensors Pt100, Pt250, Pt1000 and Ni100 are available. Sensor connection 3- or 4-wire. 4-wiring requires jumper setting on circuit board, see picture on page 7.

You can change sensor type by R0-value to Pt100...Pt1000 sensor only by giving resistance value in 0 °C, f.ex. for Pt100 sensor R0 = 100.0 ohm or for pt250 sensor R0 = 250.0 ohm etc..

Calibration and error correction of RTD's

6720 assumes that sensor resistance in 0 °C is exactly R0-setting. This means that 6720 compares sensor resistance always with R0-setting. If 6720 shows too high temperature measured by the individual sensor, the sensor resistance is higher than nominal and you must increase R0-value.

Advantage of this method is that also sensors can be calibrated by giving the real measured resistance in 0 °C. F.ex. if sensor resistance in 0 °C is 100.1 ohm, R0-value will be 100.1 ohm.

Eliminating sensor tolerance may be done, if necessary, also in other than 0 °C temperature. Because Platin resistance sensors are not fully linear, you have to calculate R0-value according to equation below (other than 0 °C temperature corrections) when high accuracy is requested.

- R0 = valid R0-setting (f.ex. Pt100=100)
- Ron = corrected R0-setting (equation below)
- Ts = Uncorrected sensor temperature measured by transmitter
- Tn = corrected temperature to display; true temperature
- Kpt = Temp. coefficient of platin in RTD-table corresponding temp. in question (abt. 0.385 ohm/°C)

Calculate new R0:

Ron = R0 * (Ts * Kpt + 1) / (Tn * Kpt + 1)

F.ex. Sensor true temp. Tn = 100 °C and 6720 shows Ts = 99.7 °C, R0 = 100 (basic value). Calculate correction Ron = 100 * (99.7 * 0.385 + 1 / (100 * 0.385 + 1) = 99.71

Potentiometers

Potentiometer resistance value is 50...500 ohm by 3wire connection and 0...1000 ohm by 2-wire connection. When potentiometer glide moves from one end to the other of the potentiometer range , display value turns into Lo...Hi.

As you do not always use the whole potentiometer range, this must be noticed in scaling. The easiest way is to exploit output scaling as follows: set in input window f.ex. Lo=0 and Hi=100. Drive potentiometer from beginning to end and notice display values of 6720 (monitor). Set these values in output window as Lo- and Hi-values of mA-output.

When performing variable resistance measurement (0...1000 ohm), the scaling is done like in point Abs. sensor inputs. The sensor selection in menu = ohm.

0/4..20 mA and 0..5/10V process inputs

Input ranges: 0-5V, 0-10V, 0-20mA, 4-20mA. When process signal is selected, scale the input first directly as engineering units on monitor display. Set min. (Lo) and max. (Hi) corresponding value, f.ex. input 0-10V corresponds in display range 200-500. Set Lo=200 and Hi=500 (output range is set in its own window). In case of V-input, the jumper of the measuring card must be in position 1-2 (mV-inputs do not need jumper setting).

Abs. inputs V, ±10 V, 20 mA and ohm

The abs. inputs as not scale in the same way as process inputs simply by giving wanted display values to monitor-display. In abs. inputs Hi-setting acts as coefficient to which Lo-value is added. If input starts from zero set Lo = 0 V (Ma, ohm), input is multiplied in this case only by Hi-value.

You may select bipolar input by making cross to square (Bip) in menu. If you do not need bipolar input, select always unipolar input because then max. resolution of A/D-conversion (1/64000) is available.

mV-inputs

mV inputs may be uni- or bipolar on range +-100 mV (Bip). Unipolar range is more accurate because max. resolution of A/D-conversion (1/64000) is available. Selection Bip=Bipolar.

Infrared-sensors

Non contacting IR-sensor ranges are linearized on whole measuring range for sensor types Exergen 140F-K (-40..+350°C) and 440F-K (-30..+600°C). Emission coefficient corrects measured value to show true temperature according to emissivity of target object. Exergen sensors are calibrated for emission coefficient 0.9 (grey body). If object emision coefficient is 0.7 set Emis-value 0.7/0.9 = 0.77. More details in point Thermocouple and IR-sensor correcting coefficients (experimental Emis-control).

Other settings

Bip: Bipolar measurement is possible by unscaled inputs (mV, V and mA). Measuring range covers also negative value, f.ex. ± 100 mA.

4-wire: 4-wire measurement is possible by inputs ohm, Pt or Ni. You must select 4-wire measurement also measuring card (jumper).

Lo: Min. input value (process inputs, f.ex. 4 mA). By unscaled inputs function **Lo** acts as zero shift and can be used to correct sensor error. Value is given in engineering unit f.ex. -5 °C. Zero shift is added first eventually set Hi-coefficient.

Hi: Max. input value (process inputs, f.ex. 20 mA). By unscaled inputs **Hi** acts as input multiplier by which you can scale input value.**Lo:** You may correct sensor error by zero shift.Value is given in sensor units, f.ex. -5 °C. Zero shift is added first after eventually set Hi-value.

Emis: Emission or input multiplier, 1 = multiplier 1.

R0: RTD's 0 °C resistance value (f.ex. set Pt100 = 100 ohm)

Unit: C/F selection only with temperature sensors (Tc/ Pt/Ni).

Filt: filter

Not in use =1.000. Normal filtering 0.200 means (1/0.2=5) that the latest measurement includes one new and four old measurements. Diminishing the filter value increases the damping effect. Filtering behaves like RC-circuit.

Slew: slew rate

One measurement can not change measuring result more than slew-value allows.

It can be used to eliminate interference peaks. One measurement lasts abt.0.25 second so if slew value is 1, the measuring result can raise 4 units in one second (f.ex. 4C/s). If you prefer not to to use this limiter, set value larger than measuring range or value 0.

Pullup: sensor break pullup

If pullup is set on, a weak current is fed from time to time to sensor line in order to find out eventual sensor breaks. Function does not work with process signals (V, mA). In these signals internal pulldown leads input to 0 V or to 0 mA.

Pullup is not recommended with high impedance sensors (f.ex. Exergen) because the feeding of intermittent current to sensor line disturbs measuring (capacitive charge). By RTD's pullup is useful for wire breaks; sensor break is always detected.

Serial: You can set transmitter address when optional card for digital communication is installed. Optional card changes transmitter to model 6725.

Code: secret code for setting changes

Secret code protects the transmitter against unwanted changes. It is 6-digit numeral value. Default value is 000000 (not in use). If you happen to loose the secret code, the manufacturer will give you reset instructions for new setting.

Output settings:

Default value 0.

Lo: Scaled input or sensor value corresponding to output 4.00 mA

Hi: scaled input or sensor value corresponding 20.00 mA. Value can be anything inside selected sensor measuring range.If input is scaled process signal output Lo and Hi value are set in engineering units f.ex. input 0-10V=0-1000, output wanted 0-900=4-20mA, set Lo=0 and Hi=900.

Mode:	selection of output function range
Limit:	output limited to 420 mA, also after
	sensor break
Full:	functions abt. 3.524 mA and indicates
	therefore range exceeding and
sensor	break
Off:	gives always firm value 4.00 mA. It is used
	only for test purposes
Break:	direction of output after sensor break
DScale: <4mA	in fault situation leads output to value
UScale:	in fault situation leads output to value >20
mA	(or 20.00 mA if Mode=Limit)

4-wire connection of voltage input (10V) and of resistance measurement on measuring card

Unusual sensor inputs require jumper selection on measuring card. Open the right hand cover of the transmitter. You can easily remove measuring card from basic board. Select jumper position according to picture below.

Jumper selections of input card

Voltage input 0-10V: Jumper selection 1-2 (Factory setting)

4-wire RTD-sensors: Jumper selection 2-3

Hand held programmer 6790

You can easily program transmitters with hand held programmer which is particularly useful in field conditions. Menu structure is similar to PC-program. Programmer is simply connected to transmitters plug socket Prog with cable. Programmer is universal and does not include configuration program which is loaded from transmitter to be configured.

Load configuration program from transmitter Set value 0 No in use Set programmer baud rate

Start programming by pushing Conf -button

Start

The use of programmer

When you have switched on 6790, display shows text Conn. Set first serial communication baud rate 9600 (Baud) and then Slot setting value 0 (default value). Address is not needed.

Switch on power supply 24 V and connect cable to transmitter plug socket Prog. Now you can start loading of configuration program from transmitter by pushing ➤ button. Loading takes a few seconds. If sensor is connected to transmitter, display shows sensor measuring value. An open input may show random values.

Start programming by pushing Conf-button until the menu shows text Sensor. If you like to change sensor push \succ button and make changes by $\blacktriangle \bigtriangledown$ buttons. After selection come back to main level by *-button.

Settings are sent or canceled in Save or Undo stage by ► button.

Input settings: Sensor Selection of sensor type. Bip Bipolar measurement is possible by unscaled inputs Measuring range covers also negative value. 4-wire ohm-, Pt ja Ni-sensor 4-wire connection Lo Zero shift (sensor calibration if necessary). Hi Scaling of input (only mA- and V-inputs). Emission or input coefficient, 1 = not in use. Emis R0 RTD's 0 °C resistance value (set Pt100=100 ohm). Unit Selection of Celsius/Fahrenheit (monitor näytölle). Filter Digital filter, 1...0.001, 1 = not in use. **Slew limit** Limiter of slew rate. One measurement can not change measuring result more than slew-value allows (measuring rate is 4 times/second). If you do not want to use it, set value 0 or larger than measuring range. Pullup Selection of sensor break sensing (ON/OFF). Code Setting of secret code. You can not change settings without secret code if it is set to other than default value 000000. Selection of output range: Select wanted part of input sensor range or of scaled mAor V-input (on display) F.ex. input 0..10V = display 0..2000, output range 0..1500 = 4..20 mA. Output setting menu. Input value (on display) corresponding output 4.00mA Input value (on display) corresponding output 20.00 mA Limits output to value 4.00/20.00 mA, or to 3.5/24.0 mA Mode when input goes over or below measuring range. State of output after sensor break (>), up or down. Break Serial Do not change address, default value 0 (used for optional card only). Exit programming stage by * button and save Save settings to transmitter by \succ button.

Cancel settings and exit without saving by \triangleright button.

Settings are described in more details on pages 6 and 8.

Notes:

Nores:

Tel. +358 (0)3-342 4800 email mail@nokeval.com Fax. +358 (0)3-342 2066 http:// www.nokeval.com